
�'Iv --_/- _,p_.._

Advanced Software Development Workstation
Engineering Scripting Language Graphical Editor

DRAFT Design Document

Inference Corporation

7/9/91

Cooperative Agreement NCC 9-16

Research Activity No. SE.41

NASA Johnson Space Center
Information Systems Directorate

Information Technology Division

(NASA-CR-190393) AOVANCEO SOFTWARE

DEVELOPMENT WORKSTATION. ENGINEERING

SCRIPTING LANGUAGE GRAPHICAL EDITOR: DRAFT

DESIGN DOCUMENT Interim Report (Research

Inst. for Computin_ and Information Systems)

N92-26181

Uncl as

G3/61 0096743

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

INTERIM REPORT

. . .

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems [RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and InforrnalJon sciences. As part of thls endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCLbeginning in May 1986, to jointly plan and cxccute such research

through RICIS. Additionally, undcr Cooperative Agreement NCC 9-16.

computing and educational facilities are shared by tile two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UIICL, the mission is being

implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

t.ion, IIuman Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced developmcnt needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research intercsts, to provide addi-

tional sources of expertise to conduct needed research. For example, UIICL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research and education programs, while other research

organizations are Involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, working jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and Integrates

technical results Into the goals ofUItCL, NASA/JSC and industry.

RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Inference Corporation. Dr. Anthony

Lekkos, Associate Professor, Computer and Information Sciences, served as RICIS
research coordinator.

Funding was provided by the Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Robert Savely of the Information Technology

Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

b_

Advanced Software Development Workstation

Engineering Scripting Language (ESL) Editor
DRAFT Design Document

Prepared for

NASA- Johnson Space Center

9 July 1991

Submitted by

Inference Corporation

550 North Continental Boulevard

E1 Segundo, CA 90245

f

ESL DESIGN DOCUMENT -DRAFT

Table of Contents

,

1. Introduction

2. ESL Objects

2.1 Overview

2.2 Subprogram Objects

2.3 Node Objects

2.4 Port Objects

2.5 Connector and Connector Group Objects

2'6 Implementation Objects

2.7 Data Type Objects

ESL Menus

3.1 Overview

3.2 The View Menu

3.3 The Edit Menu

3.4 The Translate Menu

4. Graphical Creation of Objects

5. Description of Panels to Support ESL Graphical Editing

5.1 The Connector Details Panels

5.2 Node to Node Connector Details Panel

5.3 Constants to Node Connector Details Panel

5:4 Graph Input Ports to Node Connector Details Panel

5.5 The Node Details Panel

5.8 Component Details Panel

5.7 Graph Port Details Panel

6. Graph Validation and Code Generation

I. ART-IM Schema Representation of ESL Objects

1

2

2

4

5

6

7

8

9

11

11

13

14

15

16

17'

17

17

21

23

25

28

31

35

36

!

i

IE=

PAGE I

ESL DESIGN DOCUMENT -DRAFT

List of Figures

Figure 3-1:

Figure 5-1:

Figure 5-2:

Figure 5-3:

Figure 5-4:

Figure 5-5:

Figure 5-6:

Figure 5-7:

Figure 5-8:

Figure 5-9:

Figure 5-10:

ESL Editor Panel

Node to Node Connector Details Panel

Constants to Node Connector Details Panel

Select Constant Value Panel

Graph Input Ports to Node Connector Details Panel

Node to Graph Output Ports Connector Details Panel

Node Details Panel

Node Notes Panel

Component Details Panel

Component Notes Panel

Graph Ports Details Panel

12

18

22

23

24

26

27

29

30

32

33

PAGE I/

ESL DESIGN DOCUMENT - DRAFT

1. Introduction

The Engineering Scripting Language (ESL) is a language designed to allow non-

programming users to write Higher Order Language H_L) programs by-drawing

directed graphs to represent the program and having the system generate the

corresponding program in the HOL. For the implementation of ESL proposed, the HOL

code to be generated will be Ada. However, the design of the object system is intended

to be as generic as possible and to allow the possibility of generating code in other

Higher Order Languages (e.g., C) with minimal modification of the underlying graphical

editor.

The building blocks for directed graphs are nodes and connectors. Nodes are visually

represented as labeled icons (e.g., rectangles or circles) and have input and output ports

which are used to receive and produce data. On a graph, an output port from one node

may be connected to an input port on another node via a connector, Visually, all

connectors _m_._n_ _iata between two nodes are represented as a single arrow connecting
the icons representing the nodes. In addition, a graph itself can have input ports and

output ports which are connected to ports for nodes on the graph. Visually, the set of

all graph input ports is represented by a single icon an the left of the .editor window.

-_arrow from ._i_ i_n, to _ l_ode on the graph represen_ a-grouu _nn_ectors_

Similarly_ the set of all graph output ports is represented visually as a sin$1eicon oathe

fi_ht of the editor window.

Each node on a graph may represent a primitive procedure or function in the HOL (i.e.,

a primitive subprogram), an ESL control or data-passing mechanism, or another graph.

When a node is a primitive subprogram node, the node's ports represent the

subprogram's parameters and, if applicable, its return value.

Chapter 2 of this document contains a description of the objects used by the ESL

editor. Chapter 3 presents a description of the functionality supported by the ESL

Editor panel. This chapter includes a definition of the functionality supported by

pulldown menus on this panel. The following chapter describes how fl graphical objects

will be created. The popup panels designed to support creation of graph objects are

described in Chapter 5. Chapter 6 will eventually contain a description of graph

semantics and code generation. Finally, Appendix I contains the implementation of the

ESL object system in terms of ART-IM schemas.

This document will be revised as design of the ESL editor progresses. It is possible that

not all features described in the design will be included in the initial implementation of

the software.

_!

PAGE1

ESLDESIGNDOCUMENT- DRAFT

2. ESL Objects

2.1 Overview

The ESL system supports user generation of HOL programs through the manipulation

of directed graphs. The components of these graphs - the nodes, ports, and connectors -

are objects each of which has its own properties and property values. The focus of this

chapter is to identify these object types and define their properties.

The purpose of the ESL graphical editor is to allow the user to create or edit graph

objects which represent programs. This will be done with the ESL graphical user

interface, either by manipulating icons that represent objects or by changing the values

in the fields of a popup window.

The basic ESL object types are: the subprogram, the node, the port_the connector, the

implementation, and the data type: The node, the port, and the connector objects all

map directly to concepts already introduced. A _subDrol_ram object represents a

subprogram in the Higher Order Language - either a primitive procedure'or function or

a graph built up from other subprograms. An im_)lementation object contains

information about how a subprogram is implemented in the HOL. The_datatype object

contains information about a data type in the HOL.

Node Objects

There are several classes of node objects: the subprogram-node (which includes

_:, _e, and sub_:raph-node objects), the _e.r_e _e, the

, and the con_ (If, Select, _1 Iterator).

A subprogram-node object is used to represent a procedure or function coded in the

HOL or to represent a graph previously created through the ESL editor.

sub_)ro_ram-node obiect points t ° a subprogram object: Subprogram objects are objects
visible through the ACCESS Tools Panel and included in the ACCESS taxonomy.

Subprogram objects have corresponding ports. Ports of a procedure or a function object

represent parameters of the corresponding procedure or function or the return value of

the function. Ports of a graph object, called graph ports, are mapped to ports on nodes

of the graph by connector objects.

Merge nodes and Replicator nodes are "glue" nodes that provide for flexibility in

connecting nodes. A Merge node has one or more input ports and one output port; a

data object on any of the input ports is immediately passed to the output port. A

Repllcator node has one input port and several output ports; a data object on the input

port is immediately passed to each of the output ports. Most Merge and Replicator

PAGE2

ESL DESIGN DOCUMENT -DRAFT

nodes will be defined implicitly, by having two or more connectors with the same

destination port (Merge) and two or more connectors with the same source port

(Replicator).

Finally, there are the control nodes - If, Select, and Iterator. The If and Iterator nodes

represent an 'ill" construct in the H-OL and the select node represents a "case" or

"switch" statement. :_

Implementation Objects

An implementation object contains inf6rmatlon about how a subprogram object is

implemented. _T_k_Merge, Repllcator, If, Select anchIterator _ _ have _n

implicit implementation and do not have an associated implementation object. There

are three classes of implementation objects: inline, separately compiled procedure, and

package.

Inli_e implementat|on oble_cts are approprlate only i'or graph objects. This type of

implementation means that w-hen a subgraph node is part of a larger graph for which

code is generated, the code corresponding to the subgraph node is generated inl|ne.

Implementation objects whose type is separately compiled procedure are valid for all

subprogram objects. Such an implementation object indicates that (he subprogram is

implemented as a separately compiled Ada procedure. For a separately compiled

procedure to be called by an Ada program, the program must first "with" the

procedure; then the procedure may be called.

Package implementation objects are valid for subprograms of pr_,dure or function

type. Such an implementation object indicates that the sul)progran_been implemented

as a visible function in an Ada package. For a procedure or function in a package to be

called by an Ada program, the program must first "with" the package; then the

procedure may be called usin_ the "package.proced.ure" notation.

This is the hierarchy of objects in the ESL system:

subprogram

prlmi_Ive subprogram
funcS±on

procedure

graph

node

subprogram node

prlmlSlve subprogram node

i
|

E

PAGE3

ESL DESIGN DOCUMENT - DRAFT

port

procedure node
function node

subgraph node

merge node

repllcator node

control node

if node

select node

Iterator node

graph port

procedure port

function port

.node port

connector group

connector

implementation

Inllne implementation

separately compiled procedure

package implementation

data type

implementation

An object's properties define what data is stored with the object. In the ESL system,

objects will represented by ART-IM schemas and, possibly, by C++ c]_-_-qes. The

purpose of the following sections is to describe the properties of-the ESL objects

introduced above.

The representation of ESL objects as ART-IM schemas is given in Appendix I.

2.2 Subprogram Objects

This section describes the properties of subprogram objects - e.g., objects which

represent a subprogram or program component in some higher order language.

Subprogram properties:

• Subprogram type (e.g., procedure or function, graph).

• Name. In the case of a procedure or function object, this represents the

name of the actual procedure or function in the HOL.

• Notes. Value of this property is a documentation string.

• Input ports. Values are objects representing data passed to this subprogram.

PAGE4

ESL DESIGN DOCUMENT - DRAFT

• Output ports. Values are objects representing data returned by this

subprogram.

• Implementation. Value is an object specifying details on where the

implementation for this subprogram can be found (e.g., source/object files).

Additional optional property when the subprogram is a procedure or function:

• Visibility requirements, e.g.,

o Withed objects (Ada)

o Required include files (C)

Additional properties when the subprogram object is also agraph object:

• Has nodes. The values for this property are the node objects which are used

to construct the graph.

• Has connector groups. The values for t_is property are connector group

objects which represent a group of connectors between a pair of nodes on the

graph.

2.3 Node Objects

This section describes the properties of node objects - that is, those objects represented

graphically by a rectangle or circle. A graph represents a program or subprogram.

Node objects represent either subprograms or represent control or data passing

mechanisms for the graph.

Z

£
: B

Node properties

• Type of node. Different types of nodes are represented as subclasses of the

node object class. The different node types are described in Section 2.1.

• Name. The name is user settable.

• Notes. The value of the Notes property is a user-supplied documentation

string.

• On graph. The value of this property is the object representing the graph to

which this node belongs.

Additional property when the node is a subprogram node:

• Uses subprogram. The value of this property is a subprogram object.

PAGE 5

ESL DESIGN DOCUMENT -DRAFT

Special Node Objects

As described above, there are special types of nodes which are used for program control

and data passing. Additional properties and characteristics of these nodes are described

below:

A Merge node is a node that has an arb|trary number of input ports and one

output port. A data object on any of the" input ports is immediately

produced on the output port. The data type of the ports must be the same.

A Replicator node is a node that has one input port and an arbitrary

number of output ports. A data object on the input port is immediately

produced on each of the output ports. The data type of the ports must be

the same.

• An If node performs the same function as an "IF" statement in Ada or an

"if" statment in C. An If node must contain exactly one input port with

data type BOOLEAN; this represents the condition to be tested. It must

also have two output ports of trigger data type; one is the "then" port and

the other is the "else" port.

• An Iterator node performs much the same function as an If node, but is used

to identify parts of the graph where looping back is intended.

A Select node performs the same function as a "CASE" statement in Ada or

a "switch" statement in C. The Select node must contain exactly one input

port which corresponds to an enumerated data type. The Select node also

contains an arbitrary number of output ports, each of trigger data type.

Each output port must correspond to an allowable value for the enumerated

data type or to the special value "others" ("default" in (3). The port name

is the same as the identifier for the value on which the port is triggered. The

special port name "others" is used for the default trigger output.

2.4 Port Objects

Each subprogram object points to zero or more input port objects and zero or more

output port objects. The ports for a subprogram node are the same as the ports for the

corresponding subprogram object. The special control nodes and data-passing nodes do

not share port objects with other node objects.

Port properties:

• Name. In the case of a primitive subprogram port, this is identic_

name of the procedure or function parameter to which this port corresponds.

PAGE 6

ESL DESIGN DOCUMENT - DRAFT

• Direction (input or output).

• Data type. This is an object describing the data type in the HOL.

Additional property when the port is a graph port:

• On graph. Value is the graph object for which this object is a port.

Additional properties when the port is a port for a primitive subprogram object

(procedure or function).

• Belongs to subprogram. Value is the corresponding primitive subprogram

object.

Position. Position of the corresponding parameter in the subprogram calling

sequence. If the port represents the return value from a function, the value

of the position property is 0. = i

• Parameter type, Value can be IN, OUT, IN-OUT, or (in the case of a port

for a function object) RETURN-VALUE. When the parameter type is IN-

OUT, there is both an input port object and an output port object

corresponding to the same subprogram parameter.

Additional property when the port belongs to a control or data passing node on

graph:

• On node, Value is the node object with which this port is associated.

°

i
h

2.5 Connector and Connector Group Objects

A connector object represents a connection between ports on a graph. Visually,

multiple data connections between twoAmdes on a graph wiJl be reuresented by a sin_e

lin._._e.Hence each connector object is associated with a connector group object.

Properties of connector group objects:

• On graph. Value is graph subprogram ob_ _ct.

Source node. Value is node object on the graph, CONSTANT-VALUE

(indicating that the connector group is used to specify constant inputs to a

set of node ports) or GRAPH-INPUTS (indicating that the connector group

is used to specify a set of graph input ports).

Destination node. Value is node object on the graph or GRAPH-OUTPUTS

(indicating that the connector group is used to specify a set of graph output

ports).

PAGE7

ESLDESIGNDOCUMENT- DRAFT

• Has connectors. Values are connector objects within this group.

A connector represents a connection between two ports on a graph. These may be ports

for graph nodes or may be graph ports. The source node and destination node

corresponding to a connector are specified through the connector group object to which

the connector object belongs.

Properties of connector objects:

• Notes. Value is a user-supplied documentation string for this connector.

• Belongs to connector group. Value is a connector group object to which this

object belongs.

Source port. This must be a port corresponding to the source node for the

connector group, a constant object (when the source node property for the

connector group object has value CONSTANT-VALUES) , or a graph port

(when the source node property for the connector group object has value

GRAPH-INPUTS).

Destination port. This must be a port corresponding to the destination node

for the connector group or a graph port (when the destination node property

for the connector group has value GRAPH-OUTPUTS).

2.6 Implementation Objects

As indicated in Section 2.1, an implementation object is used to specify how and where

a subprogram is implemented. There are three subclasses of implementation objects:

inllne, separately compiled procedure, and package. Thus the type of an

implementation object is indicated by the subclass to which it belongs.

Additional property when the implementation object is of type inline:

• Code template. When a node's implementation is inline, the HOL code for

that node is generated inline with the code for the containing graph. An

inline implementation object has a template property whose value contains

the information necessary to produce the HOL code.

f

Additional properties when the implementation object is of type separately compiled

procedure:

• Source file name.

• Object file name or library file name.

fl

PAGE8

ESLDESIGNDOCUMENT- DRAFT

When a node's implementation is an object of type separately compiled procedure, then

the HOL code for that node is a standalone Ada procedure. The source file name

property contains th_ file name for the HOL source for the procedure; it is optional for

procedure or function subprogram objects. Likewise the value of the object filename

property is the name of the 9bject file for the subprogram.

Additional properties when the implementation object is of type package:

• Name of package.

• Has procedures. Values are primitive subprogram objects which correspond

to procedures or functions which are part of this package.

• Package specification file name.

• Package body file name.

• Package specification object file name.

• Package body object file name.

When a node's implementation is package, the HOL code for that node is a visible

procedure in an Ada package: Only primitive subprogram objects can have package

implementation objects. A package implementation object has properties that specify

the package name, the visible procedures in the package, and the source and object

"filenames for both the package specification and body.

2.? Data Type Objects

One of the properties Of port objects is their data type in the HOL.

must be supplied for each data type which=is:a =property value.

A data type object

The properties of a data type object are as follows:

• Name. The value of this property is a string which is the name of the data

type in the HOL (e.g., "INTEGER" in Ada, "int" in C).

• Defined Values. The values of this property, if they exist, are strings

which are allowable identifiers for this data type.

Test Function. The value of this property, if it exists, is a function which

accepts as input a string representing an identifier in the HOL and returns a

boolean value TRUE or FALSE, depending on whether the string is or is not

a valid identifier for the corresponding data type in the HOL.

PAGE 9

ESL DESIGN DOCUMENT -DRAFT

When a string is tested to see if it is a valid identifier for a particular data

type, it is first compared with the defined values for that data type. If it is

on the list of defined values, it is a valid identifier. If it is not on the list of

the defined values, then the test function, if it exists, is applied to the string.

If the test function returns TRUE, then the string is a valid identifier. If no

function is specified or the function specified returns false, then the string is

not a valid identifier.

For the ESL Editor, system defined objects will be provided for the standard HOL data

types e.g., INTEGER, FLOAT, BOOLEAN, STRING in Ada. These system

definitions may be extended with data supplied by the Knowledge Engineer (e.g., with

additional defined values_. Other data type objects must be provided as required by the

Knowledge Engineer who creates the knowledge base of primitive subprogram, objects. -

PAGE 10

ESL DESIGN DOCUMENT - DRAFT

8. ESL Menus

3.1 Overview

The ACCESS user will develop and modify ESL graphs by directly manipulating ESL

graph elements on a special ESL Editor Panel. This panel is shown in Figure 3-1. This

panel will contain a single Graph View that will display an ESL graph. In this Graph

View, the nodes will be represented by icons surrounding a text label, and the connector

groups wi_ be represented by arrows that connect two node icons. The ESL Editor

Panel will allow the user to create, destroy, move, and connect nodes. The Panel will

also contain a mechanism to allow the user to pan the Graph View.

The ESL Editor Panel will contain pulldown menus to support manipulation of graphs.

Many of these commands act on specific nodes or connectors. The user indicates which

objects are to be acted upon by "selecting" the objects to be acted upon first, then

invoking the menu function. The mechan|sm used to select objects will depend on the

the graph tool selected to support implementation, but will probably be similar to that

used by other graphical object editors. In these editors, individual objects are selected

by clicking the mouse on the object. Additional objects are selected by holding the shift

key down while clicking the mouse on additional objects. The "shift-click" mechanism

can also be used to unselect previously selected objects. Clicking on empty workspace

6_.uses all selected objects to become unselected.

In some contexts, certain pulldown menu commands will be invalid. Depending on the

implementation, this will be represented either by dimming the pulldown menu item or

by popping up a warning panel.

Underlying the node icons and arrows are ACCESS objects. Manipulating the ESL

graph elements on the ESL Editor Panel changes the corresponding ACCESS object

immediately. There is no analogy to the "Ok/Apply/Close" mechanism used to modify

non-graphicalACCESS objects.

The look and feel of the ESL Editor Panel will depend on the tool selected to support

graphical object editing. Currently it is expected that Unidraw will be selected as this

tool. Unidraw is a layer of software on top of the Interviews toolkit intended to assist

in the construction of graphical object editors.

z

E

!

__--

=

L

:i|

!

The ESL Editor Panel will contain the following pulldown menus: View, Edit, and

Translate.

The View Menu contains commands that control the Directed Graph View. Functions

available from the View Menu include Open, Parent Graph, Subgraph, Print..., and

Close.

PAGE 11

I v*----I _*_ I_'-_-_1

ESL DESIGN DOCUMENT - DRAFT

Figure 3-1: ESL Editor Panel

|
u

i

r-

PAGE 12'

ESL DESIGN DOCUMENT - DRAFT

The Edit Menu contains commands that allow for the manipulation of a selected object

or the entire graph; functions available from the Edit menu include Delete, Copy

Graph, Notes..., and Object Details.

The Translate Menu contains commands associated with generating the HOL code:

Validate Current Graph, Validate Entire Graph, and Generate Ada.

In addition to the functionality provided through pulldown menus, functionality to

create and delete nodes on the graph and to create and delete connectors between these

nodes is provided through a palette of icons and tools which is displayed on the left

hand side of the ESL Editor Panel. Additional popup panels support this functionality.

Also on the left hand side of the ESL Editor Panel are text items which indicate:

• Current graph. That is, the graph object which is currently displayed and

being edited.

• Parent graph. The parent graph to the current graph, if the current

graph was chosen by invoking the "Subgraph" item on the View Menu.

• Root graph. The most distant ancestor of the current graph, if the current

graph was chosen by invoking the "Subgraph" and "Parent Graph" options
from the View Menu.

I

• Tools Panel Object. The object currently selected on the ACCESS Tools

Panel.

The following sections describe the functionality of the various menus and menu items

in detail.

3.2 The View Menu

The View Menu contains commands that control the Directed Graph View. Functions

on this menu are: Open, Parent Graph, Subgraph, Print..., and Close.

• Open makes the Directed Graph View display the graph associated with the

ACCESS object currently selected on the Tools Panel. The name of this

object is displayed at the bottom left of the ESL Editor Panel. If the object

selected is not a graph object, this menu item is invalid. When a graph

object is first opened, it becomes the Root graph:

• The Parent Graph function shifts the Directed Graph View to the parent

graph of the current graph. This function is invalid if the graph currently

being edited was not chosen by invoking the "Subgraph" item on this menu.

PAGE 13

ESLDESIGNDOCUMENT- DRAFT

• The Subgraph function shifts the Directed Graph View to the graph
corresponding of the currently selectedsubgraph node. This command is
invalid if the currently selectednode is not a subgraph node, or if more than
one node is selected.

• Print... allows a user to print a graphical representation of an ESL graph.

A dialog box will be popped up to allow the user to select the printing

options. An option will be provided to allow a user to print out all the

subgraphs under the current graph or just the current graph.

Close dismisses the Directed Graph View.

3.3 The Edit Menu

The Edit Menu contains _commands for editing graphs. These are Delete, Copy Graph,

Notes..., and Object Details.

• Delete is used to delete the selected objects on the graph. If a node is

deletedl.all connectors to ports on that node are also deleted. If'-a connector

group is deleted, all connectors in that group are deleted.

• Copy Graph will create a copy of a graph and all its nodes, input and

output ports, and connectors.

• Notes... will cause a pop-up panel to be displayed in which the user can

enter comments about the graph currently being edited.

Object Details... pops up a window that contains details about the selected

node, graph input ports, graph output ports, or connec.tor group. This

option is invalid if there is no object selected or if there ;_ more than one

object currently selected. The characteristics of the popup window depends

on the type of object selected. This is the mechanism that will be used to
view properties that are not shown graphically on the ESL graph and to add_

notes to an object. _J

The following are potential additions to this menu:

• Undo undoes the previous previous editing or creation command.

• Duplicate makes a copy of selected nodes and connector groups which
connect these nodes.

• Cut, Copy, and Paste. These functions perform Clipboard operations. Cut

will delete the selected items (nodes and connectors) and copy them into the

i

=

|
!

|

E

PAGE 14

ESL DESIGN DOCUMENT - DRAFT

clipboard. Copy will copy the selected items into the clipboard without

deleting them. Paste will place whatever is in the clipboard into the view.

If no item is selected, Cut and Copy are dimmed. If there is no item in the

clipboard, Paste is invalid.

In the initial implementation, only Cut (_te) will be implemented.

3.4 The Translate Menu

This menu contains the functions associated with generating the HOL code. These

functions are: Validate Current Graph, Validate Entire Graph, and Generate Ada Code.

• Validate Current Graph. This function checks the validity of the current

graph at top level. A graph is valid if a syntactically correct HOL program

can be generated from the graph and various semantic constraints are

satisfied. What constitutes valid graph semantics will be described in more

detail in Chapter 6. Validating the current graph does not include

validation of subgraph nodes, except to insure that all subgraph input ports

are supplied with data of the correct type and that connectors from the

subgraph node output ports connect to other ports of the same type.

• Validate Entire Graph This function checks the validity of the current

graph and, recursively, of all its subgraph nodes.

Generate Ada Code This function is used to generate Ada code for the

current graph. This command automatically invokes the Validate Entire

Graph function. If the graph is not valid, code generation does not take

place.

ORIGINAL PAGE IS

OF POOR QUALITY

PAGE 15

ESLDESIGNDOCUMENT- DRAFT

4. Graphical Creation of Objects

Two methods are currently under evaluation for creating node and connector group

objects as displayed in the ESL Editor. The first method is the pulldown menu

mechanism. The second method, and that which is currently favored, for graphical

creation of objects is the mechanism supported through the Unidraw graphical editing

package. With this mechanism, the user is presented with a palette of tools, each

represented by an icon. Clicking the select button while over a tool selects it as the

currently wielded tool. Clicking the select button in the drawing area invokes the
command associated with the tool.

The menu items or toois that create nodes are: Subprogram Node, Merge, Replicator' if,

Select, and Iterator. If the menu mechanism is used, these commands will create a node

in the center of the screen after which the user can move it. If the tool mechanism is
used. the node will be created at the place on the screen where the tool is wielded. The

ubprogram node created will be one correspondin to currently selected object on t_ee

_.C..[_ESS tools panel. The name of this object is displayed on the bottom left of the

ESL Editor Panel. I_ the object selected is not a Subprogram object, the Subprogram

Node option wiII be invalid.

Creation of connector group objects will be handled differently. Both the menu item

approach and the tool approach involve introducing a "connect mode". Once in

connect mode, the user must specify the source for the connector group and the

destination. This may be done by mouse clicking or by some other method.

On the left of the graph display area is an icon which represents the input ports for the

current graph; to the right is an icon representing the graph's output ports. When

creating a connector group object, the user can select the input ports icon as the source

or the output ports icon as a destination. This is the means of creating graph ports.

Any graph node can be a source or destination node for a connector group. A means

will also be defined for creating a connector group object which connects constant

objects and input ports for a node.

After a connector group object has been created, the user may select it and then select

the "Object Details..." option from the Edit Menu, which will cause a Connector Detail.s.

to be displayed. The user can then create individual connectors using this panel.

This panel will be displayed automatically when the connector group object is initially
created.

i?

?
f

PAGE 16

ESLDESIGNDOCUMENT- DRAFT

5. Description of Panels to Support ESL
Graphical Editing

5.1 The Connector Details Panels

The Connector Details Panels are used to create, modify, or examine the connector

groups on a graph. All connectors in a connector group have the same Source and

Destination, and all connectors that have the same Source and Destination are in the

same group. The Source of a connector can either be a Node, a Constant value, or a

Graph Input Port. The Destination of a connector can either be a Node or a Graph

Output Port. Depending on the Source and Destination of the connector group, one of

the following four Connector Details Panels will be popped up:

• Node to Node Connector Details

• Constant to Node Connector Details

• Graph Input Port to Node Connector Details

• Node to Graph Output Port Connector Details

Since the Node to Node Connector Details is the most general of the Connector Details

Panels, it will be discussed first. Then the others will be discussed in turn. The four

Connector Details Panels are shown in Figures 5-1, 5-2, 5-4, and 5-5.

5.2 Node to Node Connector Details Panel

The Node to Node Connector Details Panel is used when both the Source and

Destination of the connector group are nodes. The Node to Node Connector Details

Panel is shown in Figure 5-1. The contents of fields on the panel and responses to

events are described below:

• On Graph. The On Graph Field contains the name of the graph that the

connector is on. The text in this field is read only.

Connectors. The Connectors Field is a textlist field which lists all the

connections between the Source and Destination. The title of the textlist

identifies the Source and Destination of the connector group. The contents

of the textlist are items with fields for the source port name and data type,

and the destination port name and data type. The source and destination

ports always have the same data type. If there are no connectors between

the Source and Destination, then the textlist contains the single item

"<none> ", which, if selected, becomes unselected immediately.

PAGE 17

ESL DESIGN DOCLW_NT -DRAFT

Figure 5-1: Node to Node Connector Details Panel

PAGE 18

ESL DESIGN DOCUMENT -DRAFT

Selecting an item on the Connectors textlist causes the selection of the items

in the Sources textlist and Destinations textlist that correspond to the source

and destination of the selected connector item. The Connector Notes text

field will be populated with user-entered notes about this connector.

The current selection on the Connectors textlist is read when the Disconnect

Button is selected. The Disconnect Button is described below.

Source POrts and Destination Ports. The Source Ports Field is a textiist

field listing the output ports of the Source node. Its title identifies the

Source node. Similarly, the Destination Ports Field lists the input ports of

the Destination node and its title identifies the Destination node. Both fields

are populated with items that include the port name and data type.

When an item on the Source Ports textlist or Destinations Ports textlist is

selected, one of two things will happen. If the item selected corresponds to a

port that is already the source or destination of a connector between the two

nodes, then the corresponding connector item in the Connectors textlist is

selected, as is the corresponding source or destination port item on the other

textlist. The Connector Notes text field is populated with any user-entered
notes about the connector.

If the item selected does not correspond to a port that is a source or

destination of a connector between the two nodes, then any selected item in

the Connections textlist is unselected and any corresponding text in the

Connector Notes Field is also cleared. If there is an item selected in the

other (Source Ports or Destination Ports) textlist and it is not of the same

data type as the item just selected, then it is unselected as well.

All nodes have an output port with trigger data type named "<done>". It

is trigsered after the node has executed. Likewise, all nodes have an inpu-_

port with trigger data type named "<:ready_". When HOL code is

generated from a graph, it will be generated in such a way that the code

corresponding to a node with a trigger connection to second node is executed

prior to the code corresponding to the second node. This is described in

more detail in Chapter 6.

The current selections on the Source Ports textlist and Destination Ports

textlist are read when the Connect button is selected.

Node Details... Below the Source Ports textlist is a button labeled Node

Details... When it is selected, a Node Details Panel with information about

the Source node will be popped up. A similar button appears below

Destination Ports textlist. The Node Details Panel is discussed in Section

5.5.

PAGE 19

ESLDESIGNDOCUMENT- DRAFT

Connector Notes. The Connector Notes Field is a text field containing

one line of user-editable notes about a specific connection. When an item is

selected on the Connections textlist, the Connector Notes Field is populated

with the notes for that connector. If an item is selected in the Connectors

textlist, the Connector Notes Field is read when the user terminates input to

that field.

If no item is selected in the Connectors textlist, then the Connection Notes

field can be used to enter notes about a new connector. When this is the

case, the Connector Notes field is read when the Connect button selected.

Connect. The Connect Button is used to define a connection between a

port on the Source node and a port on the Destination node. When selected,

a new connection is defined between the port corresponding to the currently

selected item on the Source Ports textlist and the port corresponding to the

currently selected item on the Destination Ports textlist. An item for the

new connector object is added to the Connectors textlist and is selected.

The Connector Notes field is read and its contents are now associated with

the new connection definition. The definition is not transformed into an

actual connector object until the Apply or Ok Button is selected. A

definition which has not been applied is discarded if the panel is dismissed

with the Close Button.

Disconnect Button. The Disconnect Button is used to specify deletion of

an existing connector object. When selected, the currently selected item on

the Connections textlist is deleted and the Connectors textlist is left with no

item selected. Any selected items on the Source Ports textlist or on the

Destination Ports textllst are unselected. The Connector Notes field is

cleared. The corresponding connector object is not permanently deleted

until the Apply or Ok Button is selected.

If there are no more connectors between the Source and Destination, then

the Connectors textlist is populated with the single item, "<:none>"

Apply. When the Apply Button is selected, any connection definitions or

deletions entered through the Connector Details Panel are transformed into

actual connector objects or deletions of connector objects. If any constraint

violations have occurred, a warning panel is displayed.

Close. When selected, the Close button dismisses

propagating any changes entered since the last apply.

the panel without

Ok. Selecting the Ok button is equivalent to selecting Apply followed by

Close.

PAGE 2O

ESLDESIGNDOCUMENT- DRAFT

5.3 Constants to Node Connector Details Panel

The Constants to Node Connector Details Panel is used when the source ports for a

connector group are all constants. The fields on this panel are the same as those on the

Node to Node Connector Details Panel, with one exception. Instead of a Sources

textlist, a text field is provided to allow the user to enter a constant value. Below this

Constant Value Field is a button which when selected will cause a panel to pop up to

help the user choose a constant value. The Constant to Node Connector Details Panel

is shown in Figure 5-2. The differences in behavior between this panel and the Node to
Node Connector_=De{aiis Panel are listed below:

Connectors. Items in the Connectors field do not contain explicit

information-about the data type Of the connector%source. This allows more

room for the constant value. When an item is selected, the Constant Value

Field is populated with the value of the Source Port of the corresponding
connector.

• Constant Value. The Constant Value Field is a text field which is used to

enter a constant value to be _ed-as the source of a connector. If the value

of this field is changed while an item on the Connectors textiist is selected,

its value is tested for validity. This means that it is tested to see if it is a

valid identifier for the data type of the input port to which it is intended to
be connected.

{

R

_=

=

|

i
E

|

A description of how identifiers are tested for validity is contained in Section
2.7.

Select... The Select... Button is used to help a user select a constant value

to be applied to a given port. To be used, an item must be selected on the

Destination Ports textlist, and a set of constant values for that data type

must be defined. If this is the case, then the Select Constant Value Panel is

popped up. This panel is shown in Figure 5-3.

The Select Constant Value Panel has a static text field that indicates the

data type of the destination, a textlist that contains the defined constant

values for that type, an Ok button, and a Cancel button. When an item is

selected on the textlist and the Ok button is selected, the panel is dismissed

and the Constant Value Field is populated with the selected value. The

Cancel button dismisses the Select Constant Value Panel and leaves the

Constant Value Field unchanged.

Connect. Before defining a connection, the constant source value is

checked to see if it is a valid identifier for the data type of the destination

port. If it is not, a warning panel is displayed and the connection is not
defined.

PAGE 21

It, h_,,-_e _-._.

to

F-_---I [°,---- I

ESL DESIGN DOCUMENT -DRAFT

Figure 5-2: Constants to Node Connector Details Panel

i

i

!
!

i
!
E

!

!

]

t
1

1

, = :: ±:: = : :=: : :=

PAGE 22

I

ESL DESIGN DOCUMENT - DRAFT

_Figure 5-3: SelectConstant Value Panel Z

[
|
|
!

• Disconnect. In addition to the actions descri_ in Section 5.2, selecting

Disconnect also clears the Constant Value Field.

m
!

!
!
!

_|
|

5.4 Graph Input Ports to Node Connector Details Panel

The Graph Input Ports to Node Connector Details Panel is used to connect graph input

ports to a node's input ports. Instead of a Source Ports textlist, it has a text field for

entering a name for a graph input port. This text field behaves like the Constant Value

Field on the Constants to Node Connector Details Panel. The panel has a Graph Port

Details... button instead of a Node Details... button. When the Graph Port Details...

button is selected, a Graph Port Details Panel is popped up for the graph's input ports.

The Graph Port Details Panel is discussed in Section 5.7. The Graph Input Ports to

Node Connector Details Panel is shown in Figure 5-4.

The Node to Graph Output Ports Connector Details Panel is used to connect a node's

ports to graph output ports. Its behaves analogously to the Graph Input Ports to Node

PAGE 23

]
]

o- _
._z

i

l

i

-!
i

- i
• _ !

-i
-- |

.... i

!
k_

II

|

L -

L

ESL DESIGN DO_NT -DRAFT

Figure 5-4: Graph Input Ports to Node Connector Details Panel

PAGE 24

ESL DESIGN DOCUMENT - DRAFT

Connector Details Panel. The Node to Graph Output Port Connector Details Panel is

shown in Figure 5-5.

When defining a connection to a graph port that is already connected to another port,

the data types must be compatible. If this is not the case, a warning panel is popped

up and the connection definition is not made.

5.5 The Node Details Panel

The Node Details Panel is used to view information about a node on a graph. From

this panel the user may also change the name of the node or pop up a Notes Panel

where notes about the node's use may be browsed or edited. The Node Details Panel is

shown in Figure 5-6. The contents of the fields on the panel and responses to events are
described below:

Name. The Name Field is a text field which contains the node's name.

Initially a node's name is system-generated. This field is read and the node's

name is changed when the user terminates input to the field.

Type. The Type Field identifies the type of of the node. Examples of

values displayed in this field are "Procedure," "Function," "Subgraph," and

"If." The text in this field is read only.

Input Ports and Output Ports. The Input Ports and Output Ports

Fields are textlist fields which list the input ports and output ports for the

node and the connections they are associated with. Items in these fields give

the port name, data type, and a connection status string.

The current selection of either textlist is read when the Connector Details...

Button immediately below the textlist is selected.

Connector Details... Below both the Input Ports and Output Ports textlist

fields is a Connector Details... button. When this button is selected, a

Connector Details Panel is popped up for the connector group that

corresponds to the current selection in the textlist. The Connector Details

Panels are discussed in Sections 5.2, 5.3, and 5.4.

Component Details... When the Component Details... Button is selected,

a Component Details Panel is popped up for the subprogram corresponding

to the node. The Component Details Panel is discussed in section 5.6.

• Notes... When the Notes... Button is selected, a Node Notes Panel is

popped up. This panel is shown in Figure 5-7.

PAGE 25

t..o

ESL DESIGN DOCUMENT - DRAFT

Figure 5-5: Node to Graph Output Ports Connector Details Panel

r

I
!

|
|
f

!

!
t

i
1

-|
!
!

I
• |

z

]
|

_i
|
!
|
!
m

!
!

|

!

PAGE 26

•
J

ESL DESIGN DOCUMENT - DRAFT

Figure 5-6: Node Details Panel

°

PAGE 27

ESL DESIGN DOCUMENT - DRAFT

The Node Notes Panel contains fields that identify the node name and type,

a field with Component comments, a field with user-editable notes about the

node, an Ok button, and a Cancel button. When the Ok button is selected,

changes to the node's notes are made permanent and the panel is dismissed.

The Cancel button dismisses the panel without making any changes.

Close. When the Close Button is selected, the Node Details Panel is

dismissed.

5.6 Component Details Panel

The Component Details Panel is used to display information about a program

component (procedure, function, or subgraph) which can be used as a node on another

graph. The Component Details Panel is shown in Figure 5-8. The following describes

the fields on this panel:

Name and Type. The Name and Type Fields identify the component name

and type. Component types are either Procedure, Function, or Graph. The

text in these fields is read only.

Input Ports and Output Ports. The Input Ports and Output Ports

Fields list information about the component's input and output ports. Both

fields are populated with lines that show the port name, data type, and port

comments. For procedure or function components, the port comments are

supplied by a Knowledge Engineer. For Graph components, the port

comments are the same as the notes for the connector to the graph port.

The text in these fields is read only.

Implementation fields. The details about a component's implementation

are listed in four implementation fields. The text in all these fields is read

only. The fields are:

o Type. This field contains a string indicating whether implementation

type is Inline, Procedure, or Package.

o Package Name. If the Implementation Type is Package, then this

field contains the package name.

o Spec Filename. If the Implementation Type is Package, then the

filename for the Ada package spec is displayed in this field.

o Body Filename. If the Implementation Type is Package or

Procedure, then the filename for the Ada package or procedure body is

displayed in this field.

PAGE 28

ESL DESIGN DOCUMENT -DRAFT

Figure 5-7: Node Notes Panel

PAGE 29

J

ESL DESIGN DOCUMENT - DRAFT

Figure 5-8: Component Details Panel

PAGE 30

ESL DESIGN DOCUMENT - DRAFT

For Procedure or Function Components, the implementation information is

contained in objects created by the Knowledge Engineer. For Graph

Components, the implementation information is entered by the user.

Node Instances. The Node Instances Field is a textlist field which contains

the names of all nodes which use this program component. The current

selection from this field read when the Node Details... Button is selected.

Node Details... When the Node Details... button is selected, a Node Details

Panel is popped up with information about the node corresponding to the

currently selected item in the Node Instances textlist. The Node Details

Panel is discussed in Section 5.5

Notes... When the Notes... Button is selected, a Component Notes Panel is

popped up. This panel is shown in Figure 5-9.

The Components Notes Panel contains static text fields displaying the

component name and type, a non-editable field of comments about this

component, and a Close button. Selecting the Close Button dismisses the

panel.

Close. When the Close Button is selected, the Component Details Panel is

dismissed.

" 5.7 Graph Port Details Panel

The Graph Port Details Panel is used to browse the set of input or output ports for a

graph. This panel is popped up after the user has selected either the icon representing

the current graph's input ports or the icon representing the current graph's output

ports and then selected the Object Details... menu item on the Edit Menu. This panel

is shown in Figure 5-10.

The fields on the Graph Port Details Panel are as follows:

• Name. The Name Field displays the graph name.

read only.

The text in this field is

Graph Ports. The Graph Ports Field is a textlist field which lists

information about the graph ports being examined. The title of the textllst

identifies whether the panel is displaying the graph's input ports or its

output ports. An item in the Graph Ports textlist gives the name of graph

port, its data type, and its connection status.

The current selection from this field is read when the Connector Details...

button is selected.

PAGE 31

ESL DESIGN DOCUMENT - DRAFT

Figure 5-9: Component Notes Panel i

s l

a L

PAGE 32

ESL DESIGN DOCUMENT - DRAFT

Figure 5-10: Graph Ports Details Panel

PAGE 33

ESL DESIGN DOCb2V[ENT - DRAFT

• Connector Details... When the Connector Details... Button is selected, a

Connector Details Panel is popped up and displays information about the

connector group corresponding to the currently selected item on the Graph

Ports textlist. The Connector Details Panels are discussed in Section 5.2,

5.3, and 5.4.

• Component Details... When the Component Details... Button is selected, a

Component Details Panel for the graph to which the graph ports belong is

displayed. The Component Details Panel is discussed in section 5.6.

• Close. When the Close Button is selected, the Graph Port Details Panel is

dismissed.

PAGE 34

ESL DESIGN DOCUMENT - DRAFT

6. Graph Validation and Code Generation

[To be supplied]

i
|

E

PAGE 35

ESL DESIGN DOCUMENT - DRAFT

I. ART-IM Schema Representation of ESL
Objects

;;; Procedure and functlons schemas correspond to ADA (or C)

;;; procedures and functions

;;; They may be grouped by the knowledge engineer into classes so that

;;; the can be readily browsed from the ACCESS tools panel.

;;; For example one might have a taxonomy of the following form:

;;; hol-subprogram

;;; mathematlcal-subprogram

;;; tr±gonometrlc-function

;;; sln

;;; cos

;;; tan

;;; inverse-trigonometric-function
;;; asln

;;; acos

;;; atan

;;; list-manipulatlon-subprogr_ms

;;; etc.

;;; The schemas at the lowest levels are instances (??????)

;; a program-component schema is the parent of procedure and graph

;; schemas

;;; SLOT Defin±tlons

(defschema corresponds-to-nodes

(instance-of slot)

(cardlnallty MULTIPLE))

(defschema has-lnput-ports
(instance-of slot)

(cardlnality MULTIPLE))

(defschema has-output-ports
(Instance-of slot)

(cardlnality MULTIPLE))

(defschema has-nodes

(instance-of slot)

(cardlnallty MULTIPLE))

(defschema has-connector-groups
(instance-of slot)

(cardinallty MULTIPLE))

(defschema has-connectors

(Instance-of slot)

(cardlnallty MULTIPLE))

;;; SUBPROGRAM OBJECTS

PAGE 36

ESLDESIGNDOCUMENT- DRAFT

(defschema subprogram

(name) ;name of thls component

(notes) ;documentation for this procedure or

;graph

(has-lmplementatlon) ;pointer to implementation schema

(corresponds-to-nodes);nodes which use thls program component

(has-lnput-ports)

(has-output-ports)

(defschema primitive-subprogram

(is-a subprogram)

(subprogram-type)

;for documentation

; (has-Input-ports)

; (has-output-ports)

;for Ada value ls procedure or function

;values are procedure-port schemas

;values are procedure-port schemas

(has-vlsibillty-requlrements)

(defschema graph

(ls-a subprogram)
(has-nodes)

(has-connector-groups)

(has-Input-ports)

(has-output-ports)

;multi-valued slot. values are nodes schemas

;multi-valued slot, values are

;connector-group schemas

;values _re graph-port schemas

;Values are graph-port schemas

,,o NODE OBJECTS

;; a node is a box on a graph - so each node schema Is "on" a particular
;; graph

(defschema node

(on-graph)
(name)

(notes)

(has-lnput-ports)

(has-output-ports)
)

;value is a graph schema

;user-supplied name for node

;value Is documentation string

(defschema subprogram-node
(Is-a node)

(uses-subprogram)
)

;; a node on a graph which is itself a graph

(defschema subgraph-node

(is-a subprogram-node)

(uses-subprogram) ;value is a graph schema - inverse

;to corresponds-to-node

PAGE 37

ESL DESIGN DOCUMENT - DRAFT

(defschema prlmltlve-subprogram-node

(Is-a node)

; (uses-subprogram)

)

(defschema control-node

(is-a node)

)

(defschema 1f-node

(Is-a control-node)

; (has-Input-ports)

; (has-output-ports)

)

(defschema select-node

(Is-a control-node)

; (has-lnput-ports)

(has-output-ports)

(defschema Iterator-node

(is-a control-node)

; (has-lnput-ports)

(has-output-ports)

(defschema replicator-node
(Is-a node)

; (has-lnput-ports)

; (has-output-ports)

(defschema merge-node
(ls-a node)

; (has-input-ports)

(has-output-ports)

;;; PORT SCHEMAS

(defschema port

(name)
(direction)

(port-data-type)

;value is prlmitive-subprogram schema -

;inverse to corresponds-to-node

;value ls single port whose data type

;is boolean

;has two output ports of trigger type

;value is single port whose data type

;is of enumerated type

;has multiple output ports, each named

;to correspond with one of the

;allowable values for the input port

;data type

;value is single port whose data type

;is boolean

;has two output ports of trigger type

;value is single port of any data type

;has multiple output ports with same

;data type as the input port

;has two or more input ports with same

;data type

;has single output port of same data

;type as the input port

;value is INPUT or OUTPUT

;value is string which corresponds to

;data-type schema or "trigger"

PAGE 38

ESL DESIGN DOCUMENT - DRAFT

(defschema graph-port

(ls-a port)

(on-graph)
)

;; a prlmitive-subprogram-port schema represents the parameter to a

;procedure or function

(defschema prlmitive-subprogr_m-port

(Is-a port)

(belongs-to-subprogram) ;value is prlmltlve-subprogram schema

(position) ;position of this parameter in

;calling sequence for procedure or function

(parameter-type) ;IN, OUT, IN-OUT, or RETURN-VALUE

)

(defschema node-port ;used for instances of predeflned nodes

(Is-a port)
(on-node)

)

;;; DATA-TYPE SCHEMAS

;; naming convention is name of data type with "-DATA-TYPE-SPEC"

;; appended - e.g., INTEGER-DATA-TYPE-SPEC

(defschema data-type

(name-of-data-type)

(defined-values)

(test-functlon)

(defschema constant

(has-data-type)
(value)

;value is string

;values are strings

;boolean functlofi which accepts a

;string token

;as input and determines If it is an

;allowable identifier for this data type

;value is data-types schema

;value is string s_ho_t_ the
;function referenced from the

;test-function slot of the data-types

;schema, when applied to this string,

;returns T

;;; CONNECTOR and CONNECTOR GROUP SCHEMAS

;;; HAVE PUT IN CONNECTOR-GROUP SCHEMA so that logical organlzatlon

;;; corresponds with graphical representation - one could do away

;;; with the connector-group schema

PAGE 39

ESLDESIGNDOCUMENT- DRAFT

(defschemaconnector-group
(on-graph)
(source-node)

(destlnation-node)

(has-connectors)

)

(defschema connector
(notes)

;inverse of has-connector-groups

;value is node schema which is on the

_same graph as this connector or

;CONSTANT-VALUE or GRAPH-INPUTS

;value is node schema which is on the

;same graph as this connector or

;CONSTANT-VALUE or GRAPH-0UTPUTS

;values are connector schemas

;value Is documentation string

(belongs-to-connector-group) ;value is connector-group schema

;; the type of value for the source-port slot depends on

;; the value of the source-node slot in the connector-group

;; schema as follows:

;; if the value of the source-node slot Is

a) a node schema , then the value of the

source-port slot must be one of the values of the

has-output-ports slot of the node schema

b) CONSTANT-VALUE, then the value of the source-port slot

must be a constant schema

c) GRAPH-INPUTS then the value of the source-port slot

be a graph-port schema whose dlrectlon Is INPUT

(source-port)

;; analogous constraints apply to the wlue of the
;; destination-node

(destination-port)
)

;;; IMPLEMENTATION SCHEMAS

(defschema implementation)

(defschema inllne-lmplementatlon

(is-a Implementatlon)

(code-template)

)

(defschema separately-compiled-procedure

(ls-a implementation)

(source-file-name)

(object-file-name)

(library-file-name)
)

PAGE 40

ESLDESIGNDOCUMENT- DRAFT

(defschem_ package-lmplement_tlon

(is-a Implementat±on)

(name-of-packaEe)

(has-procedures)

(package-spec-f il e-n_me)

(package-body-f IIe-name)

(pack_ge-obJ ect-spec-file-name)

(pack_ge-body-obj ect-flle-name)
)

PAGE 41

